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SUMMARY

This paper presents how the equations of magnetohydrodynamics (MHD) in primitive form should be written in
conservative form with the inclusion of a divergence source along with a divergence wave and how a physically
correct sonic ®x can be embedded directly in the ¯uxes. The numerical scheme was applied to a blast wave
problem in which a circular energetic plasma is released in a free and magnetized medium with a re¯ected wall.
The results show that the method with the new sonic ®x can handle the divergence condition on the magnetic
®eld and produces an almost uniform shock compression in all directions, resolving the shocks and
discontinuities rather sharply. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The equations of magnetohydrodynamics (MHD) describe the transients and equilibrium states of the

plasma particles1 that interact with electric and magnetic ®elds by means of the plasma waves whose

properties can be analytically investigated.2,3 In this work, a Roe-type approximate Riemann solver4

is developed for the ideal MHD equations with a new Roe averaging,5 a new sonic ®x,6 a divergence

source and a divergence wave which completes the eight-wave structure required to remove the

numerical errors arising from the divergence condition on the magnetic ®eld.

2. MHD EQUATIONS WITH A ~H � ~B SOURCE AND A NEW SONIC FIX

Preserving the condition ~H � ~B � 0 to highest numerical accuracy in solving the conservative form of

the MHD equations has been a very dif®cult problem.7 Recently it was shown that, when the

primitive form of the multidimensional MHD equations is carefully analysed, one ends up with a

divergence wave along with seven others and source terms related to ~H � ~B1,8 in the conservative form

of the momentum equation and Faraday's law. While the magnitude of this source is very small, it
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has the stabilizing effects against the magnetic monopoles possibly created by numerics due to the

truncation and=or systematic errors (see the discussions given in Reference 9). The conservative form

of the MHD equations including the divergence source is given by
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where r;P; ~V and ~B are the density, pressure, velocity and magnetic ®eld respectively and

E � 1
2
rV 2 � P=�gÿ 1� � B2=8p is the total energy, with g the ratio of speci®c heats.

The differential form of the MHD equations (1) in two dimensions represents the conservation of

mass, momentum, magnetic and energy ¯uxes on the x±y plane with a symmetry given by @=@z � 0.

When these equations are integrated over a ®nite volume �dV � dA dt�, one gets the integral and

discrete forms � � �
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by employing the Gauss theorem. Here ~U is the state vector, A is the area of the cell whose kth cell

face length is DSk and ~Fk
n is the familiar numerical ¯ux given by
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where ~lk and ~rk are the kth eigenvalue and right eigenvector of the ¯ux Jacobian A� ~U � respectively

and ~ak is the strength of the kth wave, all evaluated at the interfaces as a function of the averaged

primitive state ~W � � ~r; ~Vx; ~Vy; ~Vz; ~Bx; ~By; ~Bz; ~P�T.

The ¯ux given by (4) produces unphysical expansion shock at sonic point (at which at least one lk

vanishes and satis®es lR
k > 0; lL

k < 0�, since the dissipation sum associated with this wave vanishes.

In order to satisfy the entropy condition, one has to build into the ¯ux a model of a smooth transonic

expansion wave. This can be done by applying a pointwise dissipation by modifying jlk j on an

empirical level (see Reference 10 as an example). A more physical mechanism presented recently by

Aslan and Kammash11,12 was proven to have created an accurate and robust ®x. The procedure will

not be repeated here, but the original feature of this ®x is that a sonic dissipation term is directly

embedded in the ¯uxes, to be used only at sonic points. Considering this new sonic ®x, the modi®ed

normal ¯ux is now given by

~F�UL;UR� � �I ÿ K*�
~FL � ~FR
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where ~kk* � �Dt=Dx��lR ÿ lL�=2 and K* � �Dt=Dx��AR ÿ AL�=2 are called the sonic ®x parameter

and sonic ®x matrix respectively. This ¯ux can easily be improved to second order by means of ¯ux

limiters (see Reference 11 for details).
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3. NUMERICAL RESULTS

The scheme described above has been tested with an instantaneous high-beta [b � P=�B2=8p�� blast

in which an energetic plasma propagates in a free and magnetized space above a re¯ective lower

boundary. The blast wave is driven by a circular region (r� 0�24) with a large overpressure and

density. The initial conditions inside and outside the region are given by

Win � �20; 0; 0; 0;B0
x;B0

y; 0; 50�T; Wout � �1; 0; 0; 0;B0
x ;B0

y; 0; 1�T; �6�

with l� 1�4. When this problem is solved with zero initial magnetic ®eld, the ¯uid particles

propagate symmetrically outside the blast centre. However, the existence of a strong magnetic ®eld

gives rise to anisotropy in the density and pressure during propagation. The test case has been run on

an 80680 Cartesian grid with x � �ÿ1; 1�; y � �ÿ0�8; 1�2� and the solutions are obtained at time

levels of 50, 100, 150 and 200 with a safety factor of 0�4. Figure 1 shows the time evolution of

pressure contours obtained with initial magnetic ®elds of B0
x � B0

y � 0 (Figure 1(b)) and

B0
x � 8;B0

y � 2 (Figure 1(a)). With zero magnetic ®eld, the energy in the central region creates a

shock wave followed by a weak contact discontinuity, both of which propagate symmetrically

outwards. When the shock re¯ects off the lower surface (at time step 150), the surface pressure (and

hence the temperature) increases and the re¯ected shock interacts with the contact discontinuity.

During this time the density and pressure are both reduced to lower levels in the central region.

When a relatively strong magnetic ®eld exists in the medium, the central region is tilted and

elongated along the direction in which the magnetic ®eld strength is maximum. This is depicted in

Figure 1(a) by the time evolution of pressure contours. How the ¯ow and magnetic ®eld

con®gurations evolve in time is depicted in Figure 2. It is remarked that the code crashes nearly after

time step 100 when no divergence source (along with the divergence wave) is used. This shows the

importance of divergence source stabilization in ®nite volume schemes. However, the source is not

needed when a ¯uctuation approach is used as will be shown in subsequent papers.

Figure 1. Circular explosion problem: pressure contours obtained with (a) initial magnetic ®eld of B0
x � 8;B0

y � 2 and (b) zero
initial magnetic ®eld
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A close examination of these results shows that the shock pro®les preserve the same amount of

sharpness regardless of direction even though no rotation is applied. Also, the new sonic ®x seems to

have produced no problems and worked very well during the iterations. These results show that the

code is capable of producing physically correct solutions on Cartesian grids (and quadrilateral grids6).

4. CONCLUSIONS

The MHD solver described here handles the sonic points and the errors made in preserving the

divergence condition and leads to uniform compression ratios in all directions even though no ¯ux

rotation and mesh re®nement are utilized. The success of this code lies behind the facts that the

new sonic ®x is embedded directly into the ¯uxes, ¯ux limiters are used instead of state limiters,

the telescoping property is preserved very carefully and, most importantly, the divergence

condition is preserved by means of a source and a new divergence wave. The next objective is to

use quadrilateral or triangular cells to simulate plasma equilibria in cylindrical, spherical, and

toroidal geometries.
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